
AFRL-SR- AR-TR-10-0022 

REPORT DOCUMENTATION PAGE 

The public reDortmg burden tor this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gauremiy .,u 

maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information including 
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-01881 Respondents should be aware that notwithstanding any other provision of law. no 
person shall be subiect to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.   

REPORT DATE (DD-MM-YYYY) 

28-02-2010 
REPORT TYPE 

Final Technical Report 

4   TITLE AND SUBTITLE 

Cognitive Radar 

3. DATES COVERED (From - To) 

March 2007-Feb. 2010 
5a. CONTRACT NUMBER 

FA9550-07- -0182 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 

Goodman. Nathan. A. 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

The University of Arizona 
888 N EUCLID AVE 
TUCSON AZ 85721-0001 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

NE 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Dr. Jon Sjogren 
Air Force Office of Scientific Research 
875 N. Randolph Street 
Suite 325, Room 3112 
Arlington. VA 22203-1768 

10. SPONSOR/MONITOR'S ACRONYM(S) 

AFOSR 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Public Release 

13 SUPPLEMENTARY NOTES 20100427016 
14. ABSTRACT 

Several advances were made toward a foundation for cognitive radar. Several extensions to optimum or matched waveform theory were completed, 
including formataation of a random-target variance function used in the design methods, extensions to M1MO radar for target identification, 
information-based waveforms in the presence of ground clutter, incorporation of constant-modulus design techniques, and an adaptive PRK 
selection technique. These techniques were also applied to spatial waveform design (i.e. beamshaping) in order to develop the fundamentals for a 
cooperative multiplatform air-to-ground surveillance capability. Two techniques based on the covariance of target track states were developed for 
integrating detection and tracking into the same Bayesian framework, as well as probability updating techniques in target parameter space for 
multi-platform detection and tracking. This allowed for beamsteenng toward areas in a scene where target presence and'or parameters were most 
uncertain. 

15. SUBJECT TERMS 

Cognitive Radar; Radar Detection: Radar Tracking; Radar Surveillance; Ground Moving Target Identification: Target Identification; 
Waveform Design 

16. SECURITY CLASSIFICATION OF: 
a. REPORT 

U 

b. ABSTRACT 

U 

c. THIS PAGE 

I" 

17. LIMITATION OF 
ABSTRACT 

uu 

18. NUMBER 
OF 
PAGES 

19a NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code! 

Standard Form 298 (Rev 8/98) 
Prescribed by ANSI Std. Z39 16 

Adobe Professional 7.0 



Cognitive Radar 

Final Performance Report 

For 

AFOSR Contract FA9550-07-1-0182 

Submitted to: 
Dr. Jon Sjogren, AFOSR 
875 N. Randolph Street 
Suite 325, Room 3112 

Arlington, VA 22203-1768 

Submitted by: 
Nathan A. Goodman, Associate Professor 

Department of Electrical and Computer Engineering 
The University of Arizona 

1230 E. Speedway Blvd 
Tucson, AZ 85721 

Phone: 520-621-4462 
Fax: 520-626-3144 

goodman@ece. arizona.edu 

THE UNivERsmr OF 

ARIZONA 
TUCSON ARIZONA 



1. GRANT OBJECTIVES 

The effort's objectives, which are unchanged from the original SOW, are: 

• Develop a Bayesian framework for the implementation of cognitive radar 

o   Design an efficient state-vector representation of current information about target 

tracks, clutter, and external interference 

o   Develop an efficient formulation of channel hypotheses that admits the potential for 

undetected targets, thus integrating detection with other radar functions 

o   Quantify relative probabilities of competing channel hypotheses for a complete 

Bayesian representation of the channel 

o   Apply target motion models to generate look-ahead Bayesian channel representations 

that will allow forward planning of radar positioning 

• Extend current work on optimized waveforms for multi-hypothesis testing to support 

cognitive radar objectives 

o   Extend waterfilling-based waveform design technique to account for signal- 

dependent interferences sources such as ground clutter 

o    Develop optimized waveform design strategies for sequential and simultaneous 

illumination by multiple transmitters 

o   Design and test sub-optimum waveform design strategies that do not require a full 

waterfilling solution (for both signal-dependent and signal-independent models) 

o   Design optimum space-time waveforms for discrete clutter cancellation and RE 

interference reduction 

• Integrate task prioritization strategies into the Bayesian hypothesis testing framework 

o   Develop approaches for integrating priorities directly into the Bayesian channel 

representation 

o    Develop approaches for integrating priorities into the waveform design 

• Demonstrate the newly developed technologies through simulation 

o   Develop an air-to-air simulation for demonstration of the Bayesian framework, 

waveform design strategies, and task prioritization 

o   Develop an air-to-ground simulation that further demonstrates the capabilities of a 

cognitive radar system to perform look-ahead planning and space-time transmit 

beamforming 



o   Demonstrate cognitive radar's look-ahead planning capability through an urban 

GMTI simulation where the radar platforms attempt to retain line-of-sight contact 

with a target 

•    When possible, work with AFRL to demonstrate cognitive radar technologies using real 

data. 



2. EXECUTIVE SUMMARY OF EFFORT 

During the "Cognitive Radar" effort, we were successful in making several advances toward 

a foundation for cognitive radar. First, we made several extensions to optimum or matched 

waveform theory, including extensions to MIMO radar for target identification, information- 

based waveforms in the presence of ground clutter, incorporation of constant-modulus design 

techniques, and an adaptive PRF selection technique. We also applied several of these 

techniques to spatial waveform design (i.e. beamshaping) in order to develop the fundamentals 

for a cooperative multiplatform air-to-ground surveillance capability. We developed two 

techniques for integrating detection and tracking into the same Bayesian framework, as well as 

probability update techniques in target parameter space for multi-platform detection and 

tracking. Applying waveform design in clutter techniques to the multi-platform detection and 

tracking scenario still continues and will be complete soon. 

We made significant progress on nearly all objectives including development of the Bayesian 

framework, extension of waterfilling-based waveform design to account for signal-dependent 

ground clutter, simultaneous illumination strategies by multiple transmitters, integration of task 

priorities into the Bayesian framework, and demonstrations through simulation. We also 

incorporated published literature on waveform design with modulus constraints into our closed- 

loop framework for target identification. 

Personnel who were supported by this project or otherwise worked on this project include: 

• Dr. Nathan A. Goodman, Associate Professor and PI, ECE Dept.; 

• Mr. Ric Romero, Ph.D. student, ECE Dept., supported by graduate research appointment 

(GRA); 

• Mr. Thomas B. Butler, M.S. student, ECE Dept., supported by GRA; 

• Mr. Jun Hyeong-Bae, M.S./Ph.D. student, supported by GRA; 

• Mr. Hyoung-soo Kim, Ph.D. student, supported by GRA; 

• Mr. Pete Nielsen, M.S. and M.B.A. student, ECE and Business, affiliated with project; 

• Mr. Christopher Kenyon, M.S. student, affiliated with project. 

At least 12 publications were based on the work supported by this grant. These publications are 

listed later in the report. 



3. ACCOMPLISHMENTS AND NEW FINDINGS 

In the following, we first describe a comprehensive theory for waveform design according to 

SNR and mutual information (MI) metrics. Then we develop a Bayesian framework for target 

identification, including incorporation of our waveform theory. Finally, we describe our 

Bayesian approach to surveillance radar, including integrated search and track with multiple 

platforms. 

A. Comprehensive Theory for Matched Waveform Design 

The literature has several examples of matched illumination waveform design techniques. 

Typical design metrics include SNR and MI. We have expanded on these results by developing 

a comprehensive approach that handles both metrics in a similar manner and can handle signal- 

dependent clutter. Furthermore, we have derived optimum waveforms for scenarios that were not 

previously published, included SNR-based waveform design for an ensemble of targets (rather 

than a single known target), and Mi-based waveform design in signal-dependent clutter. Note 

that our approach to waveform design in signal-dependent clutter does not require an iterative 

search procedure as does earlier approaches by other authors. 

Existing literature in matched waveform design includes matching to a known target for 

optimized SNR in white noise [1] and in signal-dependent clutter [2], detection of targets in 

clutter [3], and optimized MI in Gaussian noise [1]. Thus, SNR and MI have been the primary 

design metrics for matched waveforms, and various target and interference paradigms are 

possible. We developed waveform design techniques for four new cases: Mi-based waveform 

design in signal-dependent clutter, frequency-domain approach to maximizing SNR in signal- 

dependent clutter (non-iterative method), and two SNR-based waveform design strategies that 

apply to target ensembles. Below, we first address the known-target case. We then derive a 

finite-duration random target model and corresponding SNR- and Mi-based waveforms. The 

complete waveform design theory is in [4], which has been accepted for publication. 

1. Waveform Design for Known Targets 

Consider the signal model shown in Figure 1. Let g(t) be a known complex baseband target 

impulse response, x{t) be the baseband transmitted waveform, and n(t) be additive complex 

Gaussian white noise. Gaussian clutter is denoted by the random impulse response c(/), and the 

actual received signal due to clutter is JC(/)*C(/) ; hence, the measured clutter depends on the 

interaction of the clutter impulse response with the transmitted waveform. The clutter is 
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Figure 1. Known-target signal model with clutter and additive white noise. 

statistically characterized by a power spectral density (PSD), SCC(J). After the signal, clutter, and 

noise components are added, the combined signal is passed through the filter with impulse r(0 

and sampled at time / = to- We wish to design the transmit waveform and receive filter that 

maximize signal-to-interference-plus-noise ratio (SINR) at the sample time. 

Let the transmit waveform's energy be constrained such that 

Ex=\\X(t)\2dt=\\x(f)\2Jf. 
-00 -00 

The SINR can be expressed as 

)R{f)H{f)X(f)eJ2**df 

(1) 

SINR. = (2) 
D*(/)N/)# 

where L(f) = |^(/)| Scc (f) + Sm (f). Using Schwarz's inequality and then the method of 

Lagrange multipliers, the optimum waveform spectrum is 

\X(ff =max[0,5(/)(^-D(/))] (3) 

where 

B(f) 
^HfpM) 

*>(/)« 
sm{f) 

\H(f)\2 

(4) 

(5) 
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Figure 2. Random-target signal model with clutter and additive white noise. 

and A is a constant that is determined according to the energy constraint. The complete 

derivation can be seen in [4]. 

The solution (3) is found through the numerical procedure known as waterfilling, which is 

much easier to solve than earlier iterative solutions to this problem. Furthermore, if clutter is set 

to zero (i.e., Scc(f) = 0), then the expression for SINR converges to the additive noise case 

presented in [1] where the waveform is found by finding the primary eigenvector of an integral 

equation. 

2. Finite-Duration Random Target Model 

Bell [1] derived an information-based waveform using an extended target model where the 

random target impulse response h(t) was stated to be a finite-energy, finite-duration random 

process with something called a spectral variance. The meaning of a finite-duration random 

process was not formalized in [1]; however, we have formalized the definition as part of our 

waveform design work performed under this grant. Figure 2 shows the signal model for a 

random impulse response in the presence of additive noise and signal-dependent clutter. 

Let g(t) be a true wide-sense stationary complex random process (because it is stationary, it 

must be infinite duration) with some PSD and let a(t) be a rectangular window of duration 7/,. 

The product h(/) = a(t)g(t) is a finite-duration random process having support only in [0, 7},]. The 

statistics for h(t) are stationary within its interval of support. Since h(/) has finite support, it is a 

finite-energy process, and any realization h(f) will be integrable. As such, we can define a 

Fourier transform H(J) and state the energy relationship 

**-J.|*(0f<*-O"Wf#- (6) 



From (6) and the known duration of the target, we can define a time-averaged power Ph that is 

valid within the random target's support interval. Applying this time average and taking the 

expected value with respect to the target ensemble, we have 

/>=±£E[|„(0|>4£E[|H(/)| 
T„ *i   U   * " J        Th 

df- (7) 

We define E 

and 

|H(/)f as an energy spectral density (ESD) for the finite-duration random target 

^(/) = E[|H(/)-E[H(/)]|2 
(8) 

as the energy spectral variance (ESV). With the time averaging, we have (assuming zero mean) 

M/)- <*(/) |H(/)f 
T„ Th 

(9) 

which we call the power spectral variance (PSV). Note that YH (/) is not a power spectral 

density because h(t) is not a true power signal or stationary random process. However, TH (/) 

conveys the same basic information as a PSD, except that it is only valid within the finite support 

interval. 

Next, we must determine what happens when this finite-duration random target is convolved 

with a finite-duration waveform. We define the output of the convolution as 

z(t) = x{t)*h(t). (10) 

The random output z(t) only has support on the interval [0, T:] where Tz= T+ Th and Tis the 

waveform duration; furthermore, z(/) it is not stationary within that interval due to ramp-up and 

ramp-down periods of the convolution. This complicates the statistics of the output. We take the 

approach of defining an ESV for the output signal according to 

o>(f) = \x(ffol(f). 

The time-averaged PSV is then 

-».(/)   \X(ffal(f) 
*,(/)-• «K(/)| *„(/). 

(11) 

(12) 



Note that if we let the target become a true random process by allowing Th -» <x>, then the PSV of 

h(0 becomes a true PSD, and (12) becomes the input-output relationship that we are accustomed 

to for stationary random processes passing through a linear, time-invariant filter. 

3. SNR-based Waveform Design for Random Targets 

We use the local SNR metric defined in [5] for a true random process g(/), then substitute the 

finite-duration relationships. Allowing the target to be infinite duration, the output SINR spectral 

density is 

s""'\Hfisjf)+sMy {) 

and the SINR is achieved by integrating (13) over all frequencies. If the signal is observed and 

integrated over an interval To, then 

SINR = r0£*smR(/)#. (14) 

Substituting our time-averaged quantities from the finite-duration target model, the SINR is 

SINR^r "V^T        #. (15, 

Applying the Lagrange multiplier technique, the waveform spectrum that maximizes (15) is 

\x(ff =max[0,B{f)(A-D(f))] (16) 

where 

B(f)-     s.{f)     ' 07) 

D^-\W)' o8) 

and A is determined from the finite-energy constraint. 

4. Mi-based Waveform Design for Random Targets 

In this design approach, we wish to maximize the mutual information between the output 

signal z(i) and the random impulse response h(/). First, using the infinite-duration target g(/), the 

mutual information between output signal and target would be infinite because g(/) has infinite 
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entropy owing to its infinite duration (consider the number of time samples and bits necessary to 

represent a realization of g(/)). What can be defined then, is an information rate, which is 

\Hffsgg(f) '(*(');g(')l*('))=J> df- (19) 
\x{f)\ scc(fhsm(f) 

Using our finite-duration substitutions and multiplying by the output interval Tz, an approximate 

expression for the finite-duration case is 

\x(ff*Af) '(•(0;k(0l*(0) = 7,]> \ + a- df- (20) 
\*(f)\sM)+sM) 

where a = Th/T2 . Insofar as we are willing to take the analogy between a true PSD and the time- 

averaged PSV, the expression in (20) is equivalent to (19) (plus the output duration term Tz in 

front). Optimizing (20) via Lagrange multipliers gives the waveform spectrum 

where 

*(/)|2=max 0,-R(f) + jR2(f) + S(f)(A-D{f)) 

D(f) = lA£L 

sM)(2sMh<x«{f)) 
2M/)CU/)+«Y«(/)) 

s(f) = 

(21) 

(22) 

(23) 

(24) 
s„{f){sM)+**(/))' 

and is determined from the waveform energy constraint. 

The waveform theory has a nice symmetry between the equations for the different cases. We 

have strengthened the definitions of spectral variance used in [1], and if the clutter PSD is set to 

zero in the Mi-based waveform design, the equations reduce to the same equations used in [1]. 

Thus, the theory behaves as expected with respect to other published literature and as the 

duration of the finite target is allowed to go to infinity. Examples of waveform spectra and 

further commentary on the relationships between the cases can be found in [4,6]. 

These equations provide nice solutions to optimum waveform spectra under two different 

design metrics and for varying interference scenarios. The next step is to determine how the 
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customized waveforms can be used effectively in learning about a probabilistically rated radar 

channel. 

B. Closed-Loop/Cognitive Radar Framework for Radar Target Identification 

We have developed a closed-loop radar interrogation framework that can be applied to target 

identification applications, as well as integrated detection and target tracking. This closed-loop 

framework integrates matched illumination waveform design techniques with a Bayesian 

representation of the radar channel. The Bayesian representation characterizes the fundamental 

and relevant uncertainty that the radar system has about its propagation environment. For 

example, if the goal of the radar system is to classify a target, then the Bayesian model reduces to 

an ensemble of target possibilities for each target class as well as a pdf describing the target 

realizations in each class. The Bayesian representation can then be combined with the waveform 

design techniques above to transmit a waveform that is fine tuned to the fundamental question of 

target classification. In other words, the Bayesian model represents the radar channel as a 

probabilistically rated set of hypotheses, and once hypotheses have been defined, waveforms can 

be designed to enhance decision-making performance. Moreover, the interrogation procedure is 

adaptive rather than fixed. While the Bayesian representation can be used to fine tune 

waveforms, the received observations can be used to update the Bayesian representation. Hence, 

future interrogations depend on past and present received data via updates of the Bayesian 

representation. 

The UA has demonstrated that a closed-loop framework with adaptive waveform design can 

significantly decrease the number of transmissions necessary for performing statistical target 

recognition with some specified accuracy, or equivalently, can improve accuracy for a given 

number of transmissions. The closed-loop framework currently represents different hypotheses 

as either known impulse responses or as target classes, depending on the application and prior 

knowledge. In both cases, a prior probability is assigned to each hypothesis, and in the case of 

target classes, each class has a pdf that describes the relative likelihood of different realizations 

in the class. Hence, the probabilistic model inherently incorporates prior knowledge through 

class pdf s and prior probabilities. In the following, we describe the UA closed-loop radar 

framework in more detail. 

12 



1. Problem Setup and Signal Model 

Consider the hypothesis testing problem that was evaluated in [7]. Let there be M known 

hypotheses. Each hypothesis represents a different linear system, such as a different channel or 

target. Let the mth hypothesis be characterized by an impulse response hm (t) for 

me{l,2,...,M}. Therefore, if the system transmits a waveform x(t), then the received signal 

under the mth hypothesis is 

y(t)=*{t)*K.(t)+"(*) (25) 

where * is the convolution operator and n[t) is additive noise. The decision to be made is to 

choose the correct impulse response of the system. The cognitive radar system computes a 

waveform that is matched to the ensemble of hypotheses with initial probabilities. The 

waveform is transmitted, and the observations are made. The system then computes likelihood 

ratios between the various hypotheses and compares them to thresholds determined from the 

theory of sequential hypothesis testing. If the likelihood ratios corresponding to one of the 

hypotheses all exceed their predetermined thresholds, then a decision is made for that hypothesis. 

If no decision can be made, then the hypothesis probabilities are updated using Bayes' rule. 

Finally, the updated probabilities are used to compute a waveform that is matched to the 

ensemble with new probabilistic ratings, the waveform is transmitted, and the process continuous 

until a decision is made. 

When combined, the hypothesis probability updates and the matched waveform design 

strategy form the basis for a closed-loop radar system that continually adapts its waveform to 

improve discrimination between the most likely remaining hypotheses. This closed-loop process 

continues until a sequential hypothesis testing strategy determines that sufficient confidence for a 

decision has been achieved. We apply this closed-loop framework to scenarios where the 

hypotheses are known impulse responses, to scenarios where the hypotheses are statistically 

characterized classes of impulse responses, and to scenarios where targets are described by a 

library of impulses responses that describe the target from different aspect angles. 

2. Application of Waveform Designs 

Now that a target identification problem has been defined, we need to determine how the 

waveform design equations derived above might aid in identifying a target more quickly or with 

reduced time and/or energy. The key is to recognize that a Bayesian ensemble of potential targets 

13 



can be converted into a variance function that describes the variability of the different targets as a 

function of frequency. Once the variance function is defined, it can be substituted into one of the 

waveform design equations above. 

a) Ensemble of Known Target Impulse Responses 

Suppose that the target impulse responses, the //m(0's, are known and that the probability that 

the mth target is the true target is Pm. In this case, a spectral variance is straightforward to define 

[7]: 

<(f) = tP
m\
HMf- f,PJfm(f) (26) 

This spectral variance can then be substituted into one of the waveform design techniques above 

in order to spectrally shape a waveform with good discriminating ability. Both the SNR-based 

and Mi-based waveforms will focus their finite energy on the frequencies where the spectral 

variance from (26) is high and, therefore, where the targets are most identifiable. As the 

probabilities are updated in response to received measurements, the spectral variance in (26) 

obviously changes, resulting in a newly optimized waveform. 

Bayes' rule can be used to update the probabilities in response to received measurements. 

Suppose that the received signal is z(i), then Bayes' rule says that 

'.i*e)-*$P <m nz(')) 
where p(z(f)) is the pdf of the measurements and pm (z(t)) is the pdf of the measurements 

conditioned on the mth hypothesis. The denominator term in (27) is common to all hypotheses 

and serves only to scale the probabilities such that they sum to unity. For the case in this section, 

the target impulse response/transfer function is known for each hypothesis, so the received signal 

under the mth hypothesis has a mean value given by z(t) = x(t)*hm (t). The full pdf is 

determined by the statistics of the additive noise and clutter. 

b) Ensemble of Random Targets 

In most cases, the target hypotheses will not be known exactly, but rather each hypothesis is 

for a particular target type with unknown orientation. Thus it would be more reasonable to 

describe each hypothesis statistically with a pdf for its impulse response or transfer function. Let 

14 



aH m (/) ^e me spectral variance that defines the wth target class hypothesis. The equation that 

seems to be consistent with (26) is 

M 

(28) ^(/)=5>.<.(/)- 
which may be thought of as an effective ESV over multiple target classes. We have obtained 

good results by substituting (28) into our waveform design equations, but the result is not 

altogether satisfying due to the unclear meaning of the root of the spectral variance. Thus, we 

have also tried an approach where we design waveforms that are matched to each target class, 

then weight the energy in those waveforms according to Pm. This strategy was reported in [8]. 

Bayes' rule can again be used in this scenario, but the pdf of the measured data as well as 

the conditional pdf of the measured data differs due to the random nature of the target. 

Furthermore, different pdfs can result from multiple transmissions/receptions depending on 

whether the target realization is assumed to stay constant over the transmissions or whether it 

fluctuates over the transmissions. Probability density functions for several different scenarios of 

known/random target; correlated or independent over multiple transmissions; and correlated or 

independent clutter realizations have been described for the Gaussian case in [6] and need not be 

re-derived here. 

3. Results 

We have tested the above waveform derivations and target variance models using the closed- 

loop target recognition approach. In this approach, the radar system assigns initial probabilities 

to several possible target hypotheses. Each target class is characterized either by a different 

known impulse response or by a PSV. The true target hypothesis is randomly selected, and in 

the random-target case, a target realization from the selected class is randomly generated. The 

radar system transmits a waveform that is matched to the target hypotheses according to the 

hypothesis probabilities, collects the observations, and uses sequential hypothesis testing theory 

to determine if a decision can be made. If not, the probability of each hypothesis is updated, a 

new waveform is computed, and the process continues. The number of transmissions needed to 

make a decision is a random variable since different noise and target realizations affect when a 

decision can be made. 

15 
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Energy spent per Illumination 

Figure 3. Average number of transmissions to make a target recognition decision for a target embedded in 
clutter. Each hypothesis was a class of targets defined by a PSD. 

Figure 3 shows a result from one of our simulations. The adaptive interrogation procedure 

was repeated 1500 times. For each trial, one of the target classes was randomly selected as the 

true hypothesis, and a realization of the true target class was generated. A realization of the 

ground clutter impulse response was also generated. The closed-loop procedure was performed 

until a decision was made, and for each trial, the number of transmissions was noted. Then, the 

average number of iterations over the 1500 trials was computed. We see in Figure 3 that the MI- 

based waveform strategy that accounts for the ground clutter PSD ("Clutter WF") outperforms 

the other waveform strategies, especially for higher clutter-to-noise ratio (CNR). The curve 

labeled "Target WF" is obtained through Mi-based waveform design that is matched to the target 

ensemble's spectral variance and adapting the waveform at each transmission, but not accounting 

for the clutter spectrum. The "Wideband" waveform is an impulse-like waveform with evenly 

allocated energy in the frequency domain. Therefore, it is not matched to the target ensemble and 

does not adapt as the hypothesis probabilities are updated. Additional results are available in 

[4,6-10]. 

4. Additional Scenarios and Results 

a) MIMO Adaptive Waveform Design for Target Recognition 

We have also considered the question of how a multiple-input, multiple-output (MIMO) 

radar waveform should be designed for the goal of target recognition. The MIMO waveform 

design problem has been considered in [11]. In [11], the solution is in the time-domain, but the 
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matrix solution must have a Toeplitz form in order to represent a physical waveform that 

convolves with the target impulse response to produce a receive echo. This constraint is 

mentioned, but apparently is never enforced. Hence, we have been unable to implement the 

solution in [11] in our simulations. In [12], the MIMO context is a bit different - the goal is to 

transmit different temporal waveforms over different spatial beams in order to improve tracking 

and parameter estimation for multiple targets. We consider the orthogonal transmit waveform 

approach. In the orthogonal approach, it is assumed that each receiver can separate the received 

signals due to each of the transmitters. This can be done, for example, if each transmitter uses a 

non-overlapping frequency band. 

Complete details of the MIMO waveform scenario can be found in [13] and in the M.S. 

Thesis by Thomas Butler, which will be included as an attachment to this report. 

b) Constant Modulus Constraints 

In our simulation work, a time-domain waveform can be obtained by simply taking the root 

of the square of the waveform's magnitude spectrum as defined in the waveform design 

equations, then computing an inverse Fourier transform. However, this approach yields 

waveforms that are not generally constant modulus in the time domain and, therefore, do not 

operate continuously at full peak power. Fortunately, the waveform design equations only 

specify the waveform's magnitude spectrum, and not its phase characteristic. This remaining 

flexibility can be used to design constant modulus waveforms with magnitude spectra that nearly 

match the optimum desired spectra. We have not developed these constant-modulus design 

approaches, be we implemented them into our closed-loop target identification framework and 

published the results in [14]. Our results show significant performance improvement can still be 

maintained with constant-modulus waveforms even though the spectrum of the constant-modulus 

waveform may not exactly matched the optimum spectrum from one of the design equations. 

Furthermore, if a peak-power constraint is applied to a non-constant-modulus waveform obtained 

via SNR- or Mi-based design, the benefit of an optimized waveform may be reduced by a large 

amount. 

C. Spatial-Domain Matched Illumination for Integrated Search and Track 

Traditional radar systems perform search and tracking functions in a very rigid manner. 

Periodic beams sweep across the search area, and track updates are scheduled at regular 

intervals. In contrast to this, an adaptive-transmit radar system would use information it has 
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gathered and stored to dynamically control the search and track processes. For search, the radar 

system would be able to steer the antenna beam to locations in the propagation environment that 

had greater uncertainty of target presence or absence. In other words, the radar system would not 

be forced by the static sweep pattern to search areas where there is a high level of certainty 

regarding target presence. This would allow for a better allocation of time and energy across the 

propagation environment. For track, the adaptive radar system would be able to change the 

update rate based upon the current knowledge about the estimated target parameters. This would 

allow the radar system to update estimated target parameters more often for fast moving targets 

and less often for easy-to-track slow moving targets. 

We have developed a spatial-domain application of the mutual-information-based matched 

waveform technique in order to develop and test a closed-loop implementation of target 

detection and tracking. Through the equivalence of angle of arrival with spatial frequency, we 

developed a probabilistic representation of potential target locations in target parameter space. 

This probabilistic representation can then be converted into a two-dimensional spectral variance 

function (a function of spatial frequencies kx and kv) upon which the waterfilling operation can 

be applied to find a matched transmit beampattern. The target parameter model includes target 

velocity; therefore, potential targets can move between the time when the ensemble is updated 

with a data collection and the time in the future when the next transmission will occur. Thus, we 

also use a Kalman-based prediction step to anticipate the status of the probabilistic channel 

representation at the time when the transmission will occur. The result is a system with two 

different techniques for performing fully integrated search and track functions. The system scans 

and shapes its transmit beam not according to a pre-defined or fixed timeline, but according to 

the uncertainty of the probabilistic model. 

1. Single-Platform Model and Closed-Loop Beam Control 

To begin, we employ a simplified single-platform signal model that ignores range resolution 

and ground clutter. This allows us to focus on the probability-updating adaptive-beamsteering 

aspects of the system. In this scenario, the propagation channel is defined only by the presence 

and/or absence of targets, and by the parameters of targets that are present. Right away this idea 

of mixing detection (target presence/absence) with target tracking (parameter estimation/ 

uncertainty) poses an interesting problem. The measures of uncertainty in these two cases are 

completely different - a discrete random variable for the number of targets present and 
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Figure 4. Simplified single-platform look-down geometry. 

continuous random variables for the target parameters. A key challenge was how to integrate 

these two different types of objectives into a single framework for updating the Bayesian channel 

ensemble and controlling the transmit beam. In effect, there are infinitely many hypotheses for 

the channel due to the unknown number of targets and their continuum of possible parameters 

(position, velocity,...). Toward this end, we propose two different techniques, each with its own 

advantages and disadvantages. 

Consider a "look-down" geometry [15-16] depicted in Figure 4 where targets are restricted to 

the x-y plane and the radar (assumed stationary) is located at height z\ on the z-axis. The angles 0 

and (|> are the elevation and azimuth angles, respectively, from the radar to the target; therefore, 

the unit vector pointing from the radar to target is 

uR = cos 6 sin <fmx + cos 6 cos <fmx - sin 9uz. (29) 

The target velocity, which is restricted to be in the x-y plane, is defined as v = vxux + v(,w .. 

Therefore, the Doppler shift due to the motion between the target and radar platform is 

2\-u     -^(VjCOstfsin^+VyCOsflcos^) 
FD = (30) 

A A 

Finally, we assume that the antenna is able to steer a small beam over a region of the x-y plane 

located in the radar's far field, but that the region is near to the y-axis such that <J> is small. In this 

case, the Doppler shift is approximated as 

-2^ cos 0 cos ^ 
FO- OD 
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The radar antenna is assumed to be a multi-channel system such that angles can be measured. 

Thus, the radar system is capable of measuring two angles and a Doppler shift. Accordingly, the 

target parameter space is three-dimensional and we will denote the parameters as kx, kv, and Fp- 

Furthermore, the specific orientation of the antenna array and steering angle determine the 

relationships between this parameters, which will be used in the system model of the Kalman 

filter. For example, the Doppler shift equations above imply a relationship between Doppler 

shift and angle rate. 

Now, in order to set up a Bayesian channel model, we must determine how to handle 

continuous target parameters. Our approach is to discretize the target parameter space. Let the 

span of possible values for kx, ky, and FD be divided into cells that are nominally related to the 

radar's Rayleigh resolution in those three parameters. This step forms a discrete, three- 

dimensional target parameter space, and the channel ensemble is formed by considering the 

potential for target presence or absence in each cell. In other words, when every possible 

permutation of target presence/absence is considered, this forms the channel ensemble. To 

complete the probabilistic representation, each cell is assigned a probability of target presence. 

Each time data are collected, these probabilities will be updated, and when probabilities reach a 

pre-specific high level, we will begin an integrated tracking function. 

As we stated earlier, our waveform design results are useful when a probabilistic channel 

representation can be converted to a variance function that can be inserted into the waveform 

design equations. Therefore, now that we have a set of possible channel realizations and a 

probability associated with each target parameter cell, we must convert the realizations and 

probabilities into a variance function. To do this, we denote the target reflection coefficient as a 

and compute the variance of the reflection coefficient across the two hypotheses of the detection 

problem. Noting that the target reflection coefficient is zero under the target-absent hypothesis, 

the variance for a single parameter cell is 

<72=/>|a|2(l-/>). (32) 

Clearly, as the probability of target presence goes to either zero or one, the variance goes to zero. 

This is desirable because a probability of either zero or one denotes certainty about target 

presence; and when variance goes to zero, the waveform design methods will not allocate any 

energy to estimating that component. 
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Now to relate this to our three-dimensional target parameter scenario, we note that two of the 

target parameters are angles. The other parameters is Doppler shift, but an antenna beam will not 

have variation over Doppler shift. In other words, a target's illumination is only controlled by its 

location, not by its Doppler shift. Thus, we must convert the three-dimensional parameter space 

into a variance function that depends on the two beamsteering angles. To accomplish this, let the 

/th Doppler bin for a particular kx-kv cell have probability Pi(kx, ky) and reflection coefficient 

a^k^k). Assuming that the hypotheses in different cells are independent (target presence in 

one cell is not related to target presence in another cell), we can sum the variances over all 

Doppler bins to achieve the variance function 

^M,)=I^(^^)=Z^(^^)h(^^)f(i-^(^^))- (33) 
i=\ i=l 

Other than slight modifications to account for two dimensions, the variance in (33) can be 

directly inserted into the waveform design equations to determine the approximate mutual 

information that can be expected from a given beam position. Of course, the waveform design 

equations could be used to obtain an arbitrary kx-ky illumination pattern, but this would be 

difficult to implement. Instead, we use the MI equations to compute the MI that would be 

achieved by a particular beam shape as a function of the steering angles. The steering angles that 

suggest the most benefit in terms of MI are the angles used for the next transmission. 

Next, once data are collected, we apply Bayes' rule to update the probabilities in each target 

parameter cell. The exact pdf for Bayes' rule depends on the target and noise models assumed, 

but if the cell spacing is related to the underlying radar resolution, then the update largely 

depends on matched filter output. Thus, in some cases it is possible to use traditional matched 

filter processing to update the channel ensemble - the difference is that instead of making one- 

and-done decisions regarding target presence, the matched filter output is used in conjunction 

with prior knowledge about target presence in a given cell. Furthermore, the result of the 

probability update becomes the prior probability used for the next illumination. 

Finally, the above discussions focus on the detection problem, but it was an objective of this 

project to develop strategies for integration of detection and tracking into a single mode. From 

the abstract notion of Bayesian channel representations and probabilistically rated hypotheses 

about targets and their parameters, this objective is intuitively straightforward. Implementation, 
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however, makes it clear why these functions have always been separated in conventional radars. 

We have proposed two different techniques for integrating the two radar functions. 

Theoretically, the ideal solution would be to propagate the entire Bayesian ensemble forward 

in time for the next illumination. If there was a 10% chance of a target at a particular location 

and Doppler shift, then there should be a nearly 10% chance that the same target would be at a 

new location on the subsequent transmission. Unfortunately, this solution is not easy to visualize 

its implementation, and any implementation would probably be computationally impractical. 

Instead, we define a soft detection threshold above which we begin a traditional Kalman tracker. 

The tracker does not necessarily track targets, but instead tracks cells of high probability in target 

parameter space, and is used to propagate those cells forward in time to the next transmission. 

When a target parameter cell exceeds our soft detection threshold, we initiate a track with a 

parameter state vector and associated covariance. The covariance depends on SNR and radar 

resolution. A linear target motion model is used to propagate the state vector and its covariance 

forward in time. Then, we assume that the state covariance defines an ellipse of uncertainty in 

target parameter space. This ellipse describes the shape of a pdf that describes the target 

parameters; therefore, to obtain the probability that the (soft) target is within a particular cell, we 

integrate the pdf, which is defined by the covariance ellipse, over the boundaries of the cell. 

When the covariance begins to spread over multiple cells, the probability of target presence gets 

spread over those cells as well, uncertainty increases, and the beam will be steered in that 

direction to update the cells and reduce uncertainty. 

The major benefit of this approach for integrated detection and tracking is that the integration 

is smooth and natural. Waveforms (in this case steering a spatial waveform) depend on the 

probability ensemble, and detection and tracking both reduce to probability of target presence in 

a given cell. There are two main disadvantages. The first is that by completely integrating the 

two functions, it is difficult to change the emphasis on either mode. Of course, this shouldn't be 

surprising since it was our goal to treat them as one objective, not two objectives. 

The second disadvantage occurs when the target state vector falls on the boundary of two or 

more cells. Even if the track covariance is extremely tight, if the estimated parameter is exactly 

on the boundary, roughly half of the target probability will fall into each cell. Since 50% is as 

uncertain as we can get, the system will update the target even though the target parameters are 

known very well. The target will still be on a boundary, however, so the system will continue to 
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update the target until it moves off the cell boundary. This second disadvantage is a direct 

consequence of discretizing the parameter space. Variable cell sizes and positions have been 

considered to handle this problem, but the solution begins to become much more clumsy and 

loses some of its elegance. 

A second approach to integrated detection and tracking is to form a hybrid variance function 

that consists of uncertainty due to probabilities of target presence in a cell combined with the 

entropy of the target state vector. The problem here is that the two measures of uncertainty are 

completely different - the detection variance depends on a binary hypothesis problem in each 

cell while the tracking variance depends on the variance of continuous target parameters. A 

scaling factor would be necessary to combine the two variances. On the other hand, this scaling 

parameter could be the method used to control relative priorities. Depending on the value of the 

scale factor, the system could emphasize detection of new targets, tracking of existing targets, or 

a balance between the two. 

Early results for our work on single-platform cognitive radar for integrated search and track 

have been reported in [15]. Complete details of the methods used and additional results are found 

in the thesis by Nielsen [16], which will be included as an attachment to this report. 

2. Two-Platform Model and Probability Updating 

We now consider two radar platforms jointly performing search and track over a wide area, 

but observing the scene from different aspects. This paradigm has the potential for allowing 

multiple radar platforms to cooperate in ways such as handing off targets as they change 

directions and pass through clutter ridges. Conceptually, the approach is similar to the single- 

platform scenario described above, but with a few key differences. First, in the single-platform 

case, only radial velocity can be measured, so the parameter of interest was Doppler shift. When 

multiple platforms observe a scene from different angles, the Doppler shift observed by the two 

platforms is different; hence, the more natural target parameters are the absolute velocity 

components. Each platform must map velocity hypotheses into the Doppler shift that should be 

observed from its angle. Second, but related to the first, is that different radars will be able to 

measure or resolve certain target parameters, but will be blind to other parameters. For example, 

consider two platforms observing a scene from aspect angles that differ by 90 degrees. One radar 

may be able to measure vx, but not vv while the other can measure vy, but not vv. This last point 
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complicates the probability updating procedure, which is where we focus the following 

discussion. 

But before we address the multi-platform scenario, we must consider more carefully how a 

single radar measuring a parameter #with M cells would update its cell probabilities with 

received measurements. We do not assume that the cells are resolution cells at this time, but 

instead consider a general case. Let the prior probability for the wth cell be given by Pmfi. Then, 

consider a sensor that produces an iV-element measurement vector with each data collection. 

These measurements might be N slow-time measurements for the purpose of measuring Doppler, 

N spatial measurements for measuring angle, or any other combination of measurements. Let sm 

be the sampled signal produced at the radar if a target is present in the /nth parameter cell, and let 

the measurement indices be denoted by n = 0, 1,..., JV-1. For a radar system, target parameters 

can be described as frequencies (e.g., Doppler, spatial, or range), so we let the frequency 

produced by the presence of a target in the /wth cell be denoted by Fm. When these cell 

frequencies are the same, the cells cannot be resolved and are considered ambiguous. When the 

frequencies differ, it may be possible to resolve the cells depending on the difference between 

frequencies and the size N of the measurement vector. The signal produced by a target in the wth 

cell is proportional to a normalized steering vector given by 

sm=^=exp(;2/rFm[0   1   -    N-lf) (34) 

To perform a probability update, it is necessary to assume a probability model for the 

measurements. For convenience, let the targets be deterministic, i.e., known amplitude and phase 

and let the noise be additive white Gaussian. Recalling that there are 2M possible permutations of 

the overall target environment, the environment can be described by a multiple-hypothesis 

framework. The hypotheses in this framework are given by 

H0: z = n 

//,: z = s, + n 

H2: z = s2 + n 

H3: z = s, +s2 +n 

H4: z = s3 + n 

HlU_ ,:   z = s,+s2- 

(35) 

'M 
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Each hypothesis //, may be thought of as a. joint hypothesis corresponding to a unique 

permutation of target presence/absence in the individual cells. For notational convenience, we 

convert the joint hypothesis subscript i to its binary representation of 

/ = 0--00,0--01,0--10,0--ll,...,l--ll, where aO corresponds to target absent and a 1 

corresponds to target present in a cell. For example, consider the eleventh hypothesis in a five- 

cell scenario. If we let 5, correspond to the target signal produced by the /th joint hypothesis, then 

the eleventh hypothesis would be represented as //01011 and the received signal contribution 

would be Soion =84 + 82 + Si. The pdf for the measured data under the /th joint hypothesis may 

now be compactly given by 

P{*\Hi) = -t 77FexP 
(mr) 

-^r(z-S,)H(z-S,) (36) 

The goal is to update the individual cell probabilities, but in general the radar cannot 

necessarily observe each cell apart from the others. Thus, we must first update the joint 

hypotheses using Bayes rule, which states that the posterior probability for each joint hypothesis 

is given by 

,    P(HAzk ,)p(z, \H.) 
P{H,\zk)=    K   ''  k-\'Fl *'   J (37) 

PM 

where P(Hj\ zt_,) is the probability of the /th joint hypothesis prior to collecting the current 

(Ath) measurement. 

The probabilities of the joint hypotheses //, prior to the kth measurement must be calculated. 

Recall that there are M target parameter cells each described by a probability of a target being 

present in that cell. Let b\ through 6M be the individual bits of the binary representation of a joint 

hypothesis. For example, the eleventh joint hypothesis in the five-cell scenario described above 

would have b5 = 0, 64 = 1, Z>3 = 0, b2 = l,b\= 1. Since target presence or absence is assumed to 

be independent across cells, the probability of the /th joint hypothesis is 

We desire to arrive at the updated cell probabilities. Once a measurement z* is received, it is 

used to update the probabilities for all joint hypotheses. First, 2M likelihoods must be evaluated 

as dictated by (36). Then all 2M joint probabilities must be updated by (37). The updated cell 
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Figure 5. Two-sensor scenario with "blind" parameters. 

probabilities are then obtained through the marginal probabilities of the joint hypotheses. To 

calculate the marginal for the wth cell, we sum up the probabilities for any joint hypothesis that 

has a target-present state for that cell. The resulting sum is the updated probability for that cell, 

and the process must be done for all cells. 

A special case occurs when the signals produced by targets in different cells are resolvable 

by the radar, in which case each cell can be treated independently. In other words, while the 

above multiple-hypothesis testing framework applies (since it applies to all situations in general), 

it is computationally more efficient to perform separate probability updates for each the Mcells. 

If the signals due to different cells are orthogonal, then separable probability updates is 

equivalent to the full procedure of updating joint probabilities and then calculating the individual 

marginal probabilities. However, the separable procedure is computationally much simpler. 

We now finally consider two sensors as shown in Fig. 5. Sensor A can measure a parameter 

0X and not Oy and vice versa for Sensor B. For example, each sensor might be used to measure 

angular space. As seen in Fig. 5, the channel may be described by a two-dimensional map, where 

each cell is described by its 0X ,Qy coordinates. Assuming there are M 0X cells and M 0.- cells, 

there are h/t cells in the two-dimensional parameter space. For Sensor A, note under each 6>t-cell, 

there are M 0V cells that are ambiguous in the sense that Sensor A cannot resolve them. Similarly, 

for Sensor B, under each 6^-cell there are M 0X cells that are ambiguous. There are 2M  possible 

permutations of the overall target environment. Each permutation is a unique combination of 

26 



target presence or absence across the resolution cells, and each permutation is characterized by a 

probability of being true. 

Because some of the cells are resolvable, we know from the above discussion that we do not 

have to evaluate all 2M joint hypotheses. Rather, since each radar can resolve Mcells, the 

hypothesis framework for each reduces into M separable updates (the resolvable cells), but 

embedded within each separable update are M ambiguous cells. Thus, each separable update 

actually requires evaluation of 2M joint hypotheses. This is much better than evaluating 2M joint 

hypotheses, but the computational issues are still formidable. Approximate, computationally 

reduced procedures are possible, and we have tested some, but for now the above discussions 

indicate a theory for updating a probabilistic grid of target cells using multiple platforms capable 

of resolving different regions of the parameters space. 

Next, consider an example scenario of interest where Sensor A can measure or resolve 

parameters (9,, 02) and Sensor B measures (81, 63). Thus, there is a common parameter (90 that 

both sensors can measure. The SNR per measurement is 6dB and there are 4 iterations (each 

iteration consists of a single transmission from each of the two platforms). The initial prior 

probabilities are randomized on [0, 0.1] and the three-dimensional probability ensemble is 

formed. Because the ensemble is three-dimensional, it is difficult to plot and two of the 

parameters (61, 63) are interleaved onto the same axis. In the interleaved approach, the true 

targets are located in cells (2,14) and (6,65) cells. Figure 6 shows the probability updates after 

each pair of transmissions. After four iterations, the system is confident of the presence and 

location of two targets. But consider what would have happened with a traditional system. The 

probability map after the first iteration shows confidence of target presence for the radar system 

after a single (in this case, a single set of two transmissions) observation. It does not appear that 

any targets are present, so no detections would have been declared. In fact, these two targets 

might never be detected by a traditional system that collects a single set of measurements, makes 

a hard decision, and then throws away what was learned. Only by carrying over what was 

learned from previous transmissions was the radar system able to finally detect the two targets. 

This is a fundamental benefit to sequential hypothesis testing, which is effectively what we are 

implementing here. Combine this carryover with optimized illumination and there exists the 

potential for major improvements in performance. 
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Figure 6. Three-parameter Bayesian representation with blind parameters. Probability map shown after 
multiple updates from two platforms. 

Continuing along this theme, we computed the detection benefit that could be obtained with 

our strategy. Suppose that for a single data collection, a particular target has a probability of 

detection of 0.1 when the threshold is set to achieve a probability of false alarm equal to 0.01. 

Figure 7 shows a comparison of detection performance versus the number of data collections. 
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Figure 7. Detection performance of closed-loop radar vs. single-shot detection. 

For the traditional system, we say the target is detected if it exceeds the threshold on at least 

one of the collections. For the cognitive system, we set a threshold on the probability achieved 

after all collections such that the probability of false alarm is the same as for the traditional 

system. The probability of detection is much higher for the system that carries forward what was 

learned on previous transmissions without even considering optimized use of time and energy 

through waveform control. 

3. Adaptive PRF Control 

A final implementation of cognitive radar that we pursued involved using our methods to 

optimize PRF selection. Range-Doppler ambiguities are well-known phenomena of pulsed radar 

systems that limit performance. These ambiguities are caused by aliasing in the time and 

frequency domains and their structure is controlled by pulse repetition frequency (PRF); 

furthermore, these ambiguities can limit effective area coverage. Solutions range from 

individually coding pulses to staggering the PRF, but these solutions complicate matched-filter 

and FFT-based range-Doppler processing. 

We consider an adaptive PRF selection technique for mitigation of range and Doppler 

ambiguities over multiple coherent processing intervals (CPIs). Because our Bayesian 

framework for radar surveillance retains information obtained from previous transmissions, it is 

natural to consider how this information can be used to optimize PRF selection. Traditional 

systems either use the same PRF, or have a small set of PRFs that the system cycles through on a 

29 



regular basis. In this section, we select the PRF based on which PRF will provide the most 

mutual information, which in turn depends on the probabilistic channel ensemble. 

Matched filtering techniques work well for range-Doppler radar when cells are unambiguous. 

In order to determine actual target range and Doppler for ambiguous cells, ambiguity regions are 

changed by adaptively selecting the PRF while target probabilities are maintained for each 

range-Doppler cell. In this way, we select PRFs that avoid causing uncertain cells to alias on top 

of each other. Applying information theory, we can determine which PRF from a pre-defined set 

will maximize the information obtained from the channel. Hypotheses representing all 

combinations of target locations within each set of ambiguous cells are formed and probabilities 

of each hypothesis are calculated. Due to the same computational limitations described above 

under the multi-platform probability update, a reduced technique is used whereby a subset of the 

most probable hypotheses is considered. The cell probabilities are used to calculate the variance 

of the ambiguous cells which is in turn used to find the conditional mutual information of the 

ensemble and the radar channel for given the PRF. The PRF that maximizes the mutual 

information (or minimizes the uncertainty) of the ensemble is chosen for the next update. 

Suppose a typical constant-PRF waveform has a time-bandwidth product of ML. This will be 

the number of unambiguous range-Doppler cells, so further assume that the ML cells are 

arranged as M cells in one dimension (say, range) and L cells in the other dimension. In addition, 

if we desire to observe a larger area, there will be many more resolution cells that are ambiguous 

with the original ML cells. This scenario is completely analogous to the sample scenario 

described in the previous section where a given radar was only able to resolve target cells in one 

of the two target parameter dimensions. Here, we have ML resolvable cells, but for each 

resolvable cells, there are several unresolvable cells - the ambiguities. If one of the original ML 

cells shows a high probability of target presence, then that target might actually be in one of the 

ambiguities and be aliasing into one of the main ML cells. This situation will affect the 

probability updates and MI calculations. 

Let the average RCS of a target, if it is present, be a], and the let the maximum number of 

targets in a particular cell and its ambiguities be K. Purely speaking, the number of targets could 

be equal to the number of ambiguities (assuming one target per cell maximum), but limited the 

number of targets to K allows for reduced computation. Given an MxL set of orthogonal range- 

Doppler cells, the mutual information given a specific PRF is 
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(39) 

K K 

i=0 1=0 

where P„ is the noise power. The variance quantity a2
m, is the variance over the hypotheses of 

the (m,l) resolution cell. Let the average RCS of a target, if it is present, be a). For a given cell 

and its ambiguities, the average combined RCS is zero for a null hypothesis (that is, no targets in 

the resolution cell or its ambiguous cells), of for a single-target hypothesis, 2u) for a two- 

target hypothesis, and so on up to KG] for a AT-target hypothesis. Define of as the combined 

average RCS under an /-target hypothesis. We then define 
2 

(40) 

If we become certain of how many targets are in the cell, then the corresponding Pt goes to one 

while the other probabilities go to zero. In this case, the variance goes to zero, and nothing more 

can be learned. 

We use total variance in the scene to assess the performance of the MI PRF selection technique 

compared to other approaches. Figure 8 compares the total ensemble variance remaining in the 

scene after 20 CPIs for the Mi-based and random-PRF selection approaches. The Mi-based 

approach shows reduced residual variance after the 20 CPIs. 

A second performance metric that can be used is the number of transmissions required to 

make a decision on all target parameter cells. The decision criterion is based on sequential 

hypothesis testing (SHT); therefore, the experiment ends when every cell in the scene satisfies 

"cell       >   1~"FA    pr   *~'"cell   >,   '•~"MJSS /^J-V 

\-P P P P 1      'cell 'FA 'cell 'Miss 

where Pce\\ is the probability of a target being present in the cell, PFA is the desired probability of 

false alarm, and Pmiss is the desired probability of miss. Figure 9 compares the number of 

transmissions required to terminate updates for the MI and random PRF selection cases. 
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Figure 9. Comparison of the average number of CPIs required to make decisions on all cells. 

Figures 10-13 show four successive snapshots of the probability ensemble for the Mi-based 

PRF selection technique. After the first transmission, there are a number of cells that show 

increased potential for target presence when compared to the initial prior cell probability of 0.01 
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before any transmission are made. However, the aliasing is apparent as the probability map is 

periodic according to the PRF used. The PRF selection technique chooses a different PRF for 

the second CPI, resulting in the probability map shown in Figure 11. Many ambiguities are 

resolved, but there are still many uncertain cells, and we make take care not to alias them on top 

of each other. After the next two CPIs, two targets have been located with high confidence. In 

this demonstration, four PRIs were available for selection. The four PRIs were 20, 25, 30, and 

40 units. To keep the CPI duration constant for each PRF, the number of pulses in the CPI was 

varied. Therefore, the aperture-bandwidth product of each waveform was 600, which 

corresponds to the number of unambiguous resolution cells (denoted by white dashed lines). The 

total number of cells in the scene was 8000; thus, the total cells in the scene was greater than 13x 

the number of unambiguous cells in any CPI, yet careful PRF selection allowed ambiguities to be 

resolved. 
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Figure 10. Wide-area probability map after first CPI. 
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Figure 11. Wide-area probability map after second CP1. 
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Figure 12. Wide-area probability map after third CPI. 

}4 



PRI = 30 
Rtgt • 18 65 
Fdtgt = 47 77 

Figure 13. Wide-area probability map after fourth CPI. 

35 



4. REFERENCES 
[I] M.R. Bell, "Information theory and radar waveform design," IEEE Trans. Info. Theory, 

vol. 39, no. 5, pp. 1578-1579, Sept. 1993. 

[2]    S.U. Pillai, H.S. Oh, D.C. Youla, and J.R. Guerci, "Optimum transmit-receiver design in 

the presence of signal-dependent interference and channel noise," IEEE Trans. Info. 

Theory, vol. 46, no. 2, pp. 577-584, March 2000. 

[3]    S. Kay, "Optimal signal design of Gaussian point targets in stationary Gaussian 

clutter/reverberation," IEEE J. Sel. Topics Sig. Proc., vol. 1, no. 1, pp. 31-41, Jun. 2007. 

[4]    Ric A. Romero, Junhyeong Bae, and Nathan A. Goodman, "Theory and application of SNR 

and Mutual Information Matched Illumination Waveforms," accepted to IEEE Trans. 

Aerospace & Electronic Systems. 

[5]    S. Kay, Fundamentals of Statistical Signal Processing, Vol. I: Estimation Theory. Upper 

Saddle River, NJ: Prentice Hall PTR, 1993. 

[6]    R. Romero and N.A. Goodman, "Waveform design in signal-dependent interference and 

application to target recognition with multiple transmissions," IET Radar, Sonar, and 

Navigation, vol. 3, no. 4, pp. 328 - 340, August 2009. 

[7]    N.A. Goodman, P.R. Venkata, and M.A. Neifeld, "Adaptive waveform design and 

sequential hypothesis testing for target recognition with active sensors," IEEE J. Sel. 

Topics in Sig. Proc, vol. 1, no. 1, pp. 105-113, June 2007. 

[8]    R. Romero and N.A. Goodman, "Improved waveform design for target recognition with 

multiple transmissions," in Proc. 2009 International Waveform Diversity and Design 

Conference, Orlando, FL, pp. 26-30, Feb. 2009. 

[9]    N.A. Goodman, "Closed-loop radar with adaptively matched waveforms," in Proc. 2007 

International Conference on Electromagnetics in Advanced Applications," Torino, Italy, 

pp. 468-471, Sept. 2007. 

[10] J.H. Bae and N.A. Goodman, "Adaptive waveforms for target class discrimination," in 

Proc. 2007 International Waveform Diversity and Design Conference, Pisa, Italy, pp. 395- 

399, June 2007. 

[II] Y. Yang and R. Blum, "MIMO radar waveform design based on mutual information and 

minimum mean-square error estimation," IEEE Trans. Aerospace Elec. Syst., vol. 43, no. 1, 

pp. 330-343, Jan. 2007. 

36 



[12] A. Leshem, O. Naparstek, and A. Nehorai, "Information theoretic adaptive radar waveform 

design for multiple extended targets," IEEEJ. Sel. Topics in Sig. Proc, vol. 1, no. 1, pp. 

42-55, June 2007. 

[13] T. Butler and N.A. Goodman, "Multistatic target classification with adaptive waveforms," 

in Proc. 2008 IEEE Radar Conference, pp. 1-6, Rome, Italy, May 2008. 

[14] J.H. Bae and N.A. Goodman, "Evaluation of modulus-constrained matched illumination 

waveforms for target identification," accepted to 2010 IEEE Radar Conference. 

[15] P. Nielsen and N.A. Goodman, "Integrated detection and tracking via closed-loop radar 

with spatial-domain matched illumination," in Proc. 2008 International Conference on 

Radar, Adelaide, Australia, pp. 546-551, Sept. 2008. 

[16] P. Nielsen, "Adaptive spatial-domain beam steering in a wide-area search and track 

application," M.S. Thesis, ECE Dept., University of Arizona, 2009. 

37 



5. PUBLICATIONS RESULTING FROM GRANT 

Accepted: 

R. Romero, J.H. Bae, and N.A. Goodman, "Theory and application of SNR- and Mi-based 

matched illumination waveforms," IEEE Trans, on Aerospace and Electronic Systems, to appear. 

R. Romero and N.A. Goodman, "Waveform design in signal-dependent interference and 

application to target recognition with multiple transmissions," JET Radar, Sonar, and 

Navigation, vol. 3, no. 4, pp. 328 - 340, August 2009. 

N.A. Goodman, P.R. Venkata, and M.A. Neifeld, "Adaptive waveform design and 

sequential hypothesis testing for target recognition with active sensors," IEEE J. Selected Topics 

in Signal Processing, vol. 1, no. 1, pp. 105-113, June, 2007. 

R. Romero and N.A. Goodman, "Improved waveform design for target recognition with 

multiple transmissions," in Proc. 2009 International Waveform Diversity and Design 

Conference, Orlando, FL, pp. 26-30, Feb. 2009. 

P. Nielsen and N.A. Goodman, "Integrated detection and tracking via closed-loop radar 

with spatial-domain matched illumination," in Proc. 2008 International Conference on Radar, 

Adelaide, Australia, pp. 546-551, Sept. 2008. 

T. Butler and N.A. Goodman, "Multistatic target classification with adaptive waveforms," 

in Proc. 2008 IEEE Radar Conference, pp. 1-6, Rome, Italy, May 2008. 

R. Romero and N.A. Goodman, "Information-theoretic matched waveform in signal- 

dependent interference," in Proc. 2008 IEEE Radar Conference, pp. 1-6, Rome, Italy, May 2008. 

N.A. Goodman, "Closed-loop radar with adaptively matched waveforms," in Proc. 2007 

International Conference on Electromagnetics in Advanced Applications," Torino, Italy, pp. 468- 

471, Sept. 2007. 

J.H. Bae and N.A. Goodman, "Adaptive waveforms for target class discrimination," in 

Proc. 2007 International Waveform Diversity and Design Conference, Pisa, Italy, pp. 395-399, 

June 2007. 

38 



Submitted: 

R.A. Romero, CM. Kenyon, and N.A. Goodman, "Channel probability ensemble update 

for multiplatform radar systems," submitted to 2010 Cognitive Information Processing (CIP). 

J.H. Bae and N.A. Goodman, "Evaluation of modulus-constrained matched illumination 

waveforms for target identification," accepted to 2010 IEEE Radar Conference. 

H.S. Kim and N.A. Goodman, "Waveform design by task-specific information," accepted 

to 2010 IEEE Radar Conference. 

Book Chapters: 

N.A. Goodman, P. Venkata, and R. Romero, "Iterative Technique for System Identification 

with Adaptive Signal Design," to appear in Applications and Methods of Waveform Diversity, 

SciTech Publishing. 

N.A. Goodman, J.H. Bae, and R. Romero, "Waveform Design for Target Class 

Discrimination with Closed-Loop Radar," to appear in Applications and Methods of Waveform 

Diversity, SciTech Publishing. 

39 



6. INVENTIONS AND PATENT DISCLOSURES 

None. 

40 


